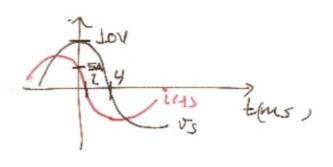
Prepa 3 Introducción a la Ingeniería Electrica



Problema I

El circuito de la figura está en régimen estaciónario sinuso idal, se conocen las formas de onda de tensión e intensidad de arriente

Determine:

/ El valor de Ry C / Valor efectivo de Ja corriente

Solución

En la figura se observa que la señal de tensión tiene un pico de soy mando tomo, lo que indica que la fase inicial de la tensión es de O°.

A partir de la forma de onde de la señal de tensión se observa que el primer cruce por cero ocurre mando t=4ms lo que implica que T=16ms.

La expresión en el fiempo de la tensión es

VSLH) = 10 eos(wt) <V?

Para haller la tonción temporal para la enviente, primero de terminamos el destasaje con respecto a la tensión. Entre el cruce por cero de la fensión y el de la corriente tenemos un $\Delta t = 2ms$, luego el desfasaje sera Ø = Atw = T/4 Ahora a partir del cruce por uno de la corrien-te hallamos el valor esicaz i(t=0)=5=1 cos(wt(0)+1/4) =D/I=54/

Shona para determinar los parametros del sistema utilizamos Fasores

7=== R-jwc A partir de la tología del circuito

V=10/6 I = 5A L450 Valor efectivo de la corriente Valor efectivo

La resistencia es directamente la parte real

Para la capacitancia tenemos:

Problema 2

El circuito de la figura se encuentra en RPS. La fre-Low rads, se sabe que I = 5A 45° Tomando

como referencia augular

V. Haller

(Dibrjar el diagrama fasonal) · Intensidades I, e Iz

R = j22 = 12 T = 1/2 V = 253 2

- · La Capacitameia C · El valor de R sabiendo que voltimetro marca 201/

Sdocion

Como se conocen las impedancias del indoctor y de la resistencia se puede haller la impendan-cia equivalente de esa rama

Z=2131+jZ <527=452/30°

La corriente Iz atrasa a la tensión V, dado que Z, es indoctiva, dado V es la re-ferencia angolar, sabemos que el augolo de la apriente Iz es-30° dado que este tiene que ser el -arg(z)

Con esta información dibojamos el diagrama fasorial para pas assilutes

The Referencia carpacitiva tiene que adelantar 90° a V

Dado que la corriente

Ahora planteamos la Ley de Kirchoff para las corrientes

王=豆、ナエ 5A 1450 = I, 1900 + In 1-300

E

5 (cos 45°+j sen 45°) = j I, + Iz (cos 30°-j seu 30°)

Isvalamos parte real con parte real.
y parte imaginaria un parte imaginaria

A partier de Iz y Z podemos hallar V

Conociendo V I, tenemos C $Z_{c} = \frac{V}{E} = \frac{16,33 V Lo^{\circ}}{5,57684 L90^{\circ}}$ = 2,928 Ze 6-90° TZc = 1 = 0,34 5mF aNF Para hallar el valor de R · Se conoce V en módolo y angulo · la caida de tensión en la resistencia está en fase con I, por tanto se conoce este argomento o fa medida del voltimetro es el módulo de la tension gle la fuente Con estos datos y a partir de la Ley de Kirchoff de terriones dibojamos el diagrama fasorial T= 16,33 V Lo V/s 145° VR = VR (45° Vs = 2020

Vs = V+V

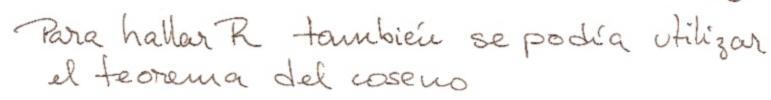
(A)

20 LD = 16,33LO + VR L45° 20 cost = 16,33 + VR cos45° 20 send = VR sen45

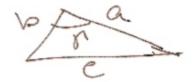
Elevamos al madrado ambas emaciones y las sumamos

(20)2(cosot send) = (16,33+ 1/2 cos45)2+ V2 3 en 45

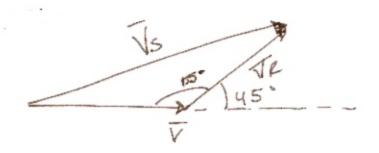
400 = (16,33)2+2(16,33) VR 12+ VR2(12)2+ (12)2VR2


400 = 266,6689 + 23,0941 VR + = 1/2 + = 1/2

VR + Z3,0941VR - 133,334 =0 = VR = {-Z7,8769V


VR = Módulo ple la cai da => Hene que ser de tensión en R un nonaero mayor que

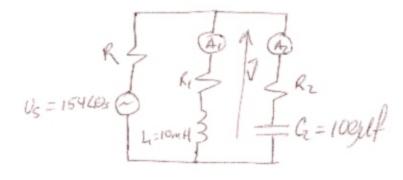
VR = 4,7828 V = DVR = 4,7828V L45°


VR = IR = DR = VR = 0,956652

Recordando c2= a2+162-2ab cos 1

si la aplicamos al diagrama fasorial que planteamos perra las tensiones

V5 = V2 + VR - 2V VR COS 135°


Problema3

sinusoidal permanente a una preenencia gle 159, 1549 Hz. Se conocen las sechiras de los amperimetros

A, = 10A Az = 64

Tembién se sabe que la impedancia de la nama 1 tiene un argumento de 45°. Tomando como crigeri de fases la tensión V. Determinar el valor de Ri, Rz, Ry es

Solveion

i'a impedancia de la pama 1 es

Zi= Ri + jwL, = JRIZ+(WL) \$tan (wL)

w= 27 f= 1000 rads

como se comoce el argumento de la impedancia de esta vama, se puede hallor el valor de R.

45° = tan(wL) = 1 R, = wL = 10.2 f

Dado que la tensión V es la referencia angular, la carriente de la parace L esta atrasan do en-TT/4 a la tensión, dada la caracteristica induction de la impedamena

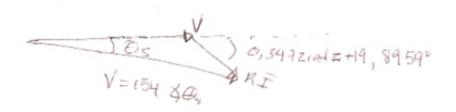
I, = 10A = 45° V= I, Z, = 141,4214110

A partir de la medicle del amperimetro Z se conèce el modulo de la corriente de esta nama Junto con la tensión se puede hallar el módulo de la impedancia

 $|z_{2}| = \frac{141.412141}{6A} = 23.5762.\Omega$ $|z_{2}| = \sqrt{R_{2}^{2} + x_{2}^{2}} = 27R_{2} = 21.3437.\Omega$ $|x_{2}| = \frac{1}{\omega_{G}} = 10\Omega$

El angulo de la corriente Iz se halla a partir

Iz = GA LPZ = tan Xc = 6,2753°


La viviente por la fuente se halla a partir de

I = I, + Iz

I = 13,298A /-19,8931°

La senación de malla len la fuente) es: $\overline{V}_S = \overline{V}_R + \overline{V} = R\overline{I} + \overline{V}$ (*)

El diagrama fasoqual es

Separando en parte real y parte imaginaria La

·154 (cos & + jsen es) = R 13,298 (cos 0,3472-jsen 0,3472) + 141,4214

Parte Real

154 cos 0 s = R 13,298 cos 0,3472 +141,4214

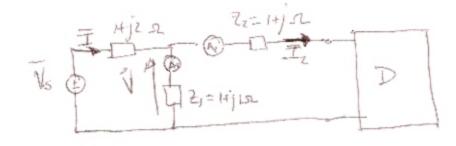
Parte imaginavia

154 SCNBs =-13,298 R Sen 0,3472

Elevando ambas ecuaciones al cuadrado y suman dolas $(154)^2 \left(\cos^2 \cos t \cdot \sec^2 \cos \right) = \left(12,5045 R + 141,4214\right)^2 + \left(4,5249\right)^2 R^2$ $23716 = 156,3625 R^2 + 3,5368 \times 10^3 R + 2 \times 10^4 + 20,4747 \cdot R^2$ $176,8372 R^2 + 3,5368 \times 10^3 - 376 = 0$

$$R = \frac{1,600652}{1,600652} \Rightarrow FR = 1,600652$$

$$T\Theta_{5} = -0,0294 = -1,6840$$


Woblema 4

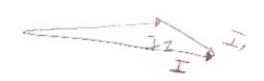
El circuito se encuentra en pégimen estacionario sinuscidal. Los amperimetros indican las siguientes mediciones

El dipolo es de caracter pesistivo y se eluca cono-

a) El valen de la resistencia equivalante

El diagrama Pasorial del sistema. (Tomar Iz como referencia)
c) Valor de la intensidad I y de la tensión Vs

Solverore


$$\sqrt{(1+R)^{2}+1^{2}} = \sqrt{2}(5)$$

$$(1+R)^{2}+1^{2} = \left(\frac{1}{2},\frac{1}{3}\right)^{2}$$

$$(1+R)^{2} = \frac{50}{9} - 1$$

$$1+R = \sqrt{\frac{50}{9}} - 1$$

$$R = \sqrt{\frac{50}{9}} - 1 - 1 = \frac{1}{1344-2}$$

